

Electrochemical Metalloporphyrin-Catalyzed Reduction of Chlorite

James P. Collman,* Roman Boulatov, Christopher J. Sunderland, Irina M. Shiryaeva, and Katja E. Berg

Department of Chemistry, Stanford University, Stanford, California 94305

Received June 14, 2002

Multielectron reductions of small inorganic molecules are extraordinarily important in the biosphere. For example, these processes form the basis for both aerobic1 and most forms of anaerobic (e.g., SO_4^{2-} , NO_3^{-} , CIO_x^{-})^{2,3} respiration. These molecules are thermodynamically powerful but inert oxidants, largely because of the unfavorable initial one-electron-transfer step. There are similarities between O2 and ClO2⁻ as oxidants. First, four-electron, four-proton (4e/4H⁺) reduction of either species is highly exergonic (~1.2 and ~0.8 V for ClO_2^- and O_2 , respectively⁴) but sluggish without catalysis. Second, partial (2e/2H⁺) reduction generates even stronger oxidants (HClO and H_2O_2 , both ~1.3 V⁴). Yet, while catalytic reduction of O₂ has been extensively studied, little is known about molecular catalysis with ClO₂⁻ as a terminal oxidant.^{5,6} Peroxidase and chloroperoxidases can utilize ClO₂⁻ as a chlorinating agent.7,8 Synthetic metalloporphyrin-mediated oxygenation9 or chlorination¹⁰ of organics with ClO₂⁻ has been reported. Hemecatalyzed dismutation of chlorite to Cl⁻ and O₂ is carried out by several bacteria¹¹ and has been utilized for anoxic hydrocarbon bioremediation.¹² A reaction between ClO_2^- and the heme of hemoglobin is thought to initiate the immunoregulatory effect of a chlorite-based drug.13

We have investigated a series of metalloporphyrins (Chart 1) as catalysts for the electrochemical reduction of ClO_2^- under anaerobic conditions.¹⁴ The reactivity of these complexes toward O₂ ranges from efficient 4e catalysis (e.g., ImFeIm₃),¹⁶ to 2e reduction of O₂ to H₂O₂ [e.g., Co(tpp)], to the absence of any catalytic activity [Al-(tpp) and Mn(tpp)]. Different distal and proximal environments of these complexes allow probing of the structural requirements for efficient catalytic reduction of ClO_2^- . Electrocatalysis was studied by rotating disk-electrode voltammetry;¹⁵ the water-insoluble complexes were deposited on a graphite electrode in contact with an aqueous electrolyte buffered at pH 7. No reduction of ClO_2^- is observed on unmodified graphite within the stability window of H₂O.

With the exception of Co(tpp) and Al(tpp), which are inert toward ClO₂⁻, all other metalloporphyrins catalyze clean 4e reduction. The onset potential of the catalysis indicates that M^{II} is the catalytically active redox state, although low-turnover-frequency (TOF) ClO₂⁻ reduction by imidazole-ligated *ferric* porphyrins starts at ~0.8 V.⁴ A total of 300–400 ClO₂⁻ molecules are reduced per molecule of Fe catalyst before loss of the activity, whereas Mn and Co porphyrins are inactivated after 20–50 turnovers.

Cl^{II}/Cl^I scavengers (phenol, Cl⁻, and 1-amino-1-cyclopropanecarboxylic acid)^{6,13} do not affect the apparent redox stoichiometry of the catalysis, but at high concentrations phenol increases the stability of the Fe catalysts.¹⁷ This suggests that catalyst degradation may be mediated in part by free Cl^{II}/Cl^I species, which are either generated in minor side reactions or are intermediates that are rapidly reduced further. The latter assertion is consistent with the observation that reduction of CIO^- is diffusion-limited throughout the potential range where catalysis is observed. Because none of the metalloporphyrins catalyzes reduction of CIO_x^- (x = 3, 4), the 4e redox stoichiometry indicates that chlorite disproportionation, which commonly accompanies reactions of transition metals with CIO_2^- ,⁶ is not significant in our system.

The catalytic rate is first-order both in ClO_2^- and, at catalyst surface coverages below 0.2-2 nmol/cm² (depending on metalloporphyrin), in the catalyst. The apparent second-order rate constants (Figure 1) were measured in the regimes where the TOF is potential-dependent (at 0.2 V)⁴ and potential-independent (at -0.25 V). The TOF at 0.2 V reflects the efficiency of the catalysts in mediating electron-transfer (ET) step(s), whereas the TOF at -250 mV is determined solely by the rate(s) of non-ET step(s) (e.g., substrate binding and/or product dissociation). The maximum rate constants of the catalytic ClO_2^- reduction by Fe porphyrins are 2-100 times those reported in the literature for oxidation of simple ferrous salts by ClO_2^- .⁶ The kinetics of oxidation of Mn^{II} or Co^{II} by ClO₂⁻ has not been previously studied.

The activity and stability of the catalysts studied are comparable in reduction of both ClO_2^- and H_2O_2 (Figure 1), including a highpotential onset of low-TOF reduction by imidazole-ligated *ferric* porphyrins. These data are consistent with reduction of ClO_2^- and H_2O_2 proceeding via a similar route, i.e., an oxygen-atom transfer with formation of oxoferryl species ($E(\text{Fe}^{\text{IV}}/\text{Fe}^{\text{III}})_{\text{pH} 7} \approx 0.9 \text{ V}$).^{16a}

In addition to ClO_x^- (x = 3, 4), the metalloporphyrins do not react with IO₃⁻, but catalytic 6e/6H⁺ reduction of BrO₃⁻ is observed. The poor ligating properties of ClO_x^- and the lower oxidizing potential of IO₃⁻ may account for the inertness of these oxoanions. Relative to ClO_2^- or H₂O₂ as substrates, lower TOFs (Figure 1) but greater catalyst stabilities are observed in reduction of BrO₃⁻. Fe(tpp) is an exception, being equally effective in catalyzing the reduction of ClO_2^- , H₂O₂, BrO₃⁻, and is particularly robust in the latter reaction, retaining its activity for >6 × 10⁵ turnovers.

The data in Figure 1 allow some conclusions to be made regarding the effect of the metal and the proximal and distal environments on the efficiency of ClO_2^- reduction. Although M^{III/II} potentials are comparable for imidazole-ligated Fe and Co, ClO_2^- reduction by Fe^{II} porphyrins is >100 times faster than that by Co (or Mn) analogues. This relative reactivity correlates qualitatively with the M^{IV/II} (M^{II}(por)/M^{III}(por⁺)) potentials. The inertness of Co-(tpp) suggests that the imidazole ligation is important for the catalytic activity of Co porphyrins. In addition, imidazole-ligated Fe centers manifest notably higher TOFs at lower overpotentials. The higher reactivity of imidazole-ligated centers toward O–O bond reduction is usually ascribed to electron donation from the imidazole to the O–O bond;¹⁸ a similar phenomenon may be operative in reduction of ClO₂⁻. The effect of the distal environment is more

^{*} Address correspondence to this author. E-mail: jpc@stanford.edu.

Chart 1. Chemical Formulas and Abbreviated Names of the Metalloporphyrins Used in This Study^a

 $^{\it a}$ The metal–metal separation in bimetallic catalysts is ~ 5 Å. 16b

Figure 1. Apparent second-order catalytic rate constants, *k*, for electrochemical reduction of ClO_2^- , H_2O_2 , and BrO_3^- in aqueous electrolytes at pH 7. Shaded rectangles: rate constants at 200 (ClO_2^- , H_2O_2) or 150 mV (BrO_3^-). Open rectangles: values at -250 mV. Rate constants < 100 M⁻¹ s⁻¹ could not be measured with sufficient precision and are not listed.

limited, except in slower reduction of BrO₃⁻, where a redox-active distal metal accelerates the catalysis (e.g., the TOF of the FeCu catalyst is >20 times that of the Fe-only analogue, and a CoCu derivative is the only catalytically active Co porphyrin). In contrast to Cu^I (Cu^{II/I} potential, ~50 mV),⁴ the distal Co^{II} (Co^{III/II} potential, ~300 mV) may not be an efficient electron donor for weaker oxidants (BrO₃⁻), accounting for the different reactivities of ImCoTACNM (M = Co, Cu) toward BrO₃⁻. Finally, unusually rapid degradation of ImCoTACNCo in the presence of H₂O₂ seems to eliminate the catalytic activity of this complex toward H₂O₂.

In contrast to ClO_2^- , H_2O_2 , and BrO_3^- , all redox-active metalloporphyrins catalyze facile ($k_{max} > 10^5 \text{ M}^{-1}\text{s}^{-1}$) 2e reduction of IO_4^- (to IO_3^-). The onset of the catalysis correlates with the M^{III/II} potential, indicating rapid catalytic turnover, limited by the concentration of the catalytically active M^{II} form.

In summary Mn, Fe, and Co porphyrins were found to be active catalysts for $4e/4H^+$ reduction of ClO_2^- ; this activity correlates well with that measured in reduction of H_2O_2 . The reactivity-enhancing effect of imidazole ligation and the distal metal was observed in several cases. The metalloporphyrins studied were inert to ClO_x^- (x = 3, 4) and IO_3^- but catalyzed $2e/2H^+$ reduction of IO_4^- ; $6e/6H^+$ reduction of BrO₃⁻ was observed for Fe and Mn porphyrins and a CoCu derivative.

Acknowledgment. We thank Dr. L. M. Slaughter for samples of Al(tpp), Mn(tpp), and NaClO₂. The work was supported financially by NSF, NIH, and a Stanford Graduate Fellowship (R.B.).

Supporting Information Available: Experimental procedures and additional data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Pereira, M. M.; Santana, M.; Teixeira, M. Biochim. Biophys. Acta 2001, 1505, 185 and references cited therein.
- (2) Moodie, A. D.; Ingledew, W. J. Adv. Microbiol. Physiol. 1990, 31, 225.
 (3) Coates, J. D.; Mechaelidou, U.; Bruce, R. A.; O'Connor, S. M.; Crespi,
- J. N.; Achenbach, L. A. *Appl. Environ. Microbiol.* **1999**, *65*, 5234. (4) All potentials are cited vs the normal hydrogen electrode (NHE) at pH 7,
- with all other chemicals in their standard states.
 (5) Stoichiometric reactions of ClO₂⁻ with transition metals are better studied.⁶
- (6) Fabian, I. Coord. Chem. Rev. 2001, 216-217, 449.
- (7) Suh, Y. J.; Hager, L. P. J. Biol. Chem. 1991, 266, 22102 and references cited therein.
- (8) Dawson, J. H. Science 1988, 240, 433.
 (9) Collman, J. P.; Tanaka, H.; Hembre, R. T.; Brauman, J. I. J. Am. Chem. Soc. 1990, 112, 3689.
- (10) Wilson, I.; Bretscher, K. R.; Chea, C. K.; Kelly, H. C. J. Inorg. Biochem. 1983, 19, 345.
- (11) Stenklo, K.; Thorell, H. D.; Bergius, H.; Aasa, R.; Nilsson, T. J. Biol. Inorg. Chem. 2001, 6, 601.
- (12) Coates, J. D.; Bruce, R. A.; Haddock, J. D. Nature 1998, 396, 730.
- (13) Schempp, H.; Reim, M.; Dornisch, K.; Elstner, E. F. Arzneimittel-Forschung 2001, 51, 554.
- (14) Little is known about electroreduction of ClO₂⁻; notable work reported in the past 35 years includes: (a) Birke, R. L.; Marzluff, W. F. J. Am. Chem. Soc. 1969, 91, 3481. (b) Pergola, F.; Guidelli, R.; Raspi, G. J. Am. Chem. Soc. 1970, 92, 2645. (c) Birke, R. L.; Cruz, T. D. S. J. Electrochem. Soc. 1973, 120, 366.
- (15) Bard, A. J.; Faulkner, L. R. *Electrochemical Methods*; Wiley: New York, 2001.
- (16) (a) Boulatov, R.; Collman, J. P.; Shiryaeva, I. M.; Sunderland, C. J. J. Am. Chem. Soc. 2002, 124, in press. (b) Collman, J. P.; Sunderland, C. J.; Boulatov, R. Inorg. Chem. 2002, 41, 2282. (c) Collman, J. P.; Boulatov, R.; Sunderland, C. J. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego; Vol. 11, in press.
- (17) Phenol inhibits catalysis by Mn and Co porphyrins, so that its effect on the redox stoichiometry could not be determined.
- (18) See, for example: Watanabe, Y. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000; Vol. 4, pp 97–117.

JA027306L